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Abstract-The multicommodity location problem with balancing requirements is related to one of 
the major logistics issues faced by distribution and transportation firms: the management of a fleet 
of vehicles over a medium to long term planning horizon. To solve this problem, we present a 
branch-and-bound algorithm in which bounds are computed by a dual-ascent procedure. We 
particularly emphasize the design of efficient branching, fathoming and preprocessing rules. The 
algorithm was tested on a wide variety of randomly generated problems, and on a large-scale 
application to the planning of the land operations of a heterogenous container fleet. Results show 
that the algorithm is highly efficient, and outperforms other existing methods. 

Keywords: Branch-and-bound, dual-ascent, multicommodity location with balancing requirements. 

R&urn&-Le problkme de localisation multiproduit avec exigences d’kquilibrage est relik g un des 
aspects importants de la planification logistique des entreprises de transport et de distribution, soit 
la gestion 1 moyen et long termes d’une flotte de vthicules. Nous prksentons un algorithme de 
siparation et ivaluation progressive (branch-and-bound) qui calcule des bornes au moyen d’une 
mkthode d’ascension duale et qui met en Cvidence des rkgles efficaces de branchement, de cessation 
de fouille et de fixation de variables. L’algorithme a tri: testi sur une grande variktk de probkmes 
gkkrks aliatoirement, ainsi que sur une application de grande taille au problbme de la planification 
du transport terrestre de conteneurs. Les rksultats montrent que l’algorithme est extremement 
efficace et qu’il l’emporte sur les autres mtthodes propokes dans la littrature. 

Mats-cl&: Branch-and-bound, mkthode d’ascention duale, problkme de localisation multiproduit 
avec exigencess d’kquilibrage. 

1. INTRODUCTION 

The multicommodity location problem with balancing requirements was first introduced 
by Crainic, Dejax and Delorme (1989). The problem is motivated by the following industrial 
application, related to the management of a heterogeneous fleet of containers by an 
international maritime shipping company. Once a ship arrives at port, the company has 
to deliver loaded containers, which may come in several types and sizes, to designated 
inland destinations. Following their unloading by the importing customer, empty containers 
are moved to a depot. From there, they may be delivered to customers who request 
containers for subsequent shipping of their own products. Furthermore, containers often 
have to be repositioned to other depots. These interdepot movements are a consequence 
of the regional imbalances in empty container availabilities and needs throughout the 
network: some areas lack containers of certain types, while others have surpluses of them. 
This requires balancing movements of empty containers among depots, and thus differen- 
tiates this problem from classical location-allocation applications. The general problem is 
therefore to locate depots in order to collect the supply of empty containers available at 
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customers’ sites and to satisfy the customer requests for empty containers, while minimizing 
the total operating costs: the costs of opening and operating the depots, and the costs 
generated by customer-depot and interdepot movements. 

Crainic, Delorme and Dejax (1993) show that standard location methods are not efficient 
for this problem, but their branch-and-bound algorithm cannot prove the optimality of 
the solution in a reasonable amount of time, except for simple data instances. Consequently, 
heuristics were proposed to solve the problem. Crainic and Delorme (1993) present a 
dual-ascent procedure which generally produces tight bounds, but still can exhibit large 
gaps on particular instances. An adaptation of the tabu search metaheuristic (Crainic, 
Gendreau, Soriano and Toulouse, 1992) generally obtains better solutions, but requires 
rather large computing times. 

In this paper, we present an exact branch-and-bound algorithm which combines an 
improved dual-ascent bounding procedure, with efficient branching, fathoming and 
preprocessing rules. In Section 2, we formulate the model and derive lower bounds that 
define a dual-ascent procedure similar to the one proposed by Crainic and Delorme (1993). 
Section 3 gives an overview of the branch-and-bound algorithm and discusses issues related 
to the design of branching, fathoming and preprocessing rules. Extensive experiments 
conducted both on a wide variety of randomly generated problems and on data from a 
large-scale application are used to identify the most efficient branch-and-bound design and 
to compare it to other algorithmic approaches. The computational results of these 
experiments are reported and analyzed in Section 4. 

2. PROBLEM FORMULATION AND BOUNDS 

To formulate the problem, we consider a directed network G = (N, A), where N is the 
set of nodes and A is the set of arcs. Moving through the network, there are several 
commodities (types ofcontainers), represented by set P. The set of nodes may be partitioned 
into three subsets: 0, the set of origin nodes (supply customers); D, the set of destination 
nodes (demand customers); and T, the set of transhipment nodes (depots). For each depot 
j E T, we define O(j) = {i E 0 : (i, j) E A} and D(j) = {i E D : (j, i) E A}, the sets of customers 
adjacent to this depot, and we assume that there exists at least one origin or destination 
adjacent to each depot j (O(j) u D(i) # 0). For each node i E N, we define the sets of depots 
adjacent to this node in both directions: T+(i) = {je T :(i, j) E A}, and T-(i) = { je T: 
(j, i) E A}. Since it is assumed that there are no arcs between customers, the set of arcs may 
be partitioned into three subsets: customer-to-depot arcs, A,, = {(i, j) E A : i E 0, j E T); 
depot-to-customer arcs, A,, = {(i, j) E A: iE IT; je D}; and depot-to-depot arcs, 
A,,={(i,j)~A:ifzT,j~T}. 

The problem consists of minimizing costs incurred by moving flows through the network 
in order to satisfy supplies at origins and demands at destinations. For each supply customer 
i E 0, the supply of commodity p is noted 04, while for each demand customer i ED, the 
demand for commodity p is noted df. All supplies and demands are assumed to be 
nonnegative and deterministic. A nonnegative cost CC is incurred for each unit of flow of 
commodity p moving on arc (i, j). In addition, for each depot j E T, a nonnegative fixed 
cost fi is incurred if the depot is opened. 

Let xG represent the amount of flow of commodity p moving on arc (i, j), and yj be the 
binary location variable that takes value 1 if depot j is opened, and value 0 otherwise. The 
problem is then formulated as: 
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Z = min C fjyj + 1 
jeT 

js;,il xj”i = dp Vi E Q P E p (3) 

ieD ksT’(j) isO keT_(j) 
(4) 

x; < opyj Vj E IT; i E O(j), p E P (5) 

Xj"i ~ dPyj Vj E T i E D(j), p E P (6) 

xyj > 0 V(i, j)E A, p E P (7) 

YjE i”, l> Vje T (8) 

Constraints (2) and (3) ensure that supply and demand requirements are met, relations 
(4) correspond to flow conservation constraints at depot sites, while equations (5) and (6) 
forbid customer-related movements through closed depots. Note that analogous constraints 
for the interdepot flows are redundant if interdepot costs satisfy the triangle inequality 
(Crainic, Dejax and Delorme, 1989), an assumption that we follow throughout this text. 

Lower bounds on the optimal value of this problem may be derived by considering the 
strong relaxation, obtained by replacing the integrality constraints (8) by yj 2 0, Vj E T The 
dual of the resulting linear program, noted 9, may be formulated as: 

Zg= max 1 
i 

c o:pLp + c df’vf 
I 

(9) 
PEP ie0 isD 

‘g - 2; - y; < cfj v(i, j) E &T, p E p (10) 

vp + 2; - yj”, < c$ %, i) E AT,, p E p (11) 

Lp - If: < CTk v(jy k)EATT, PEP (12) 

+ 

Of'$ + C dfy;i <A VjE T (13) 
PEP ieO(j) ieD I 

yyj > 0 v(iy j) E &T? p E p (14) 

r$ 2 0 v(j? i) E ATD, P E p. (15) 

Here, pp and VP are the dual variables associated with, respectively, the supply and demand 
constraints (2) and (3), AT are linked to the balancing constraints (4), while yz and $ 
correspond to constraints (5) and (6), respectively. 

Our approach to computing bounds is inspired by Crainic and Delorme (1993). They 
derive two subproblems of 3 one obtained by fixing nonnegative y variables to values 
satisfying constraints (13), and the other by fixing 1 variables to values satisfying relations 
(12). Here, we derive the two subproblems by relating them to Lagrangean relaxations of 
the original problem. 
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The first subproblem may be obtained by dualizing constraints (5) and (6), using 
nonnegative y multipliers: 

C cP$ + C dfytjq: Yj 
ieO(j) ieD 

1 { C (CC + $)X6 + C (CTi + yTi)Xj4: + C 
PEP (i, j)EAOT (j. i)eArD (j,kbA,, 

subject to constraints (2)-(4), (7) and (8). This subproblem decomposes into two parts: one 
that depends only on the flow variables and the other only on the location variables. This 
last part of the subproblem may be solved easily, without considering the integrality 
constraints (8): 

zT mink, fi - zp ( c OPYC + c &‘$i)]. (17) 
isO icD(j) 

Thus, for fixed values of the y multipliers, the Lagrangean subproblem has the integrality 
property (Geoffrion, 1974), since its optimal value can be obtained even with the integrality 
conditions relaxed. Consequently, the best lower bound on the optimal value of the original 
problem one can hope for when using this Lagrangean relaxation can be obtained by 
restricting the y multipliers to values that satisfy constraints (13). For such values, the 
Lagrangean subproblem is equivalent to the following subproblem, called FLIP relaxation: 

subject to constraints (2H4) and (7). 
This problem is a multicommodity uncapacitated minimum cost network flow problem 

(MCNF), and thus decomposes into ( P 1 single-commodity uncapacitated minimum cost 
network flow problems (for a recent survey of methods for solving this type of problem, 
see Ahuja, Magnanti and Orlin, 1993). From an optimal solution to this subproblem, an 
upper bound on the optimal value of the original problem may be easily computed by 
setting yj to 1 whenever there is flow moving through depot j, and to 0 otherwise. 

The second subproblem may be derived by relaxing the balancing constraints (4), and 
by introducing them into the objective with 1 multipliers: 

Z(n) = min C fiyj + 1 
(4 + wj (19) 

JET 
psp 

1, 

(I ;* 

OT 

+ tj,izArD (‘$ - n,P>xj”, + 1 ($k - (AT - ‘%?)xTk 

(j,k)eA,, I 

subject to constraints (2), (3) and (5H8). Note that the xTk variables are nonnegative and 
appear only in the relaxed balancing constraints (4). Thus, by restricting the multipliers to 
values satisfying constraints (12) of g,we obtain the following subproblem, called FLOP 
relaxation : 

Z(i) = min C fj_Vj + 1 1 (+i - AJP)xiq, (20) 

joT 
p E p 

i 

(, jzA Cc: + n$$ + 

I. or Cj, 0s A,, 

subject to constraints (2), (3), and (5H8). 
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This problem is an uncapacitated location problem (ULP), also called simple plant location 
problem (Krarup and Pruzan, 1983), and uncapacitated facility location problem (Cor- 
nuejols, Nemhauser and Wolsey, 1990). One of the most efficient methods for solving the 
ULP is the DUALOC algorithm proposed by Erlenkotter (1978). The algorithm works on 
a condensed formulation of the dual of the linear relaxation, in which the y variables do 
not have to be explicitly computed. From any dual solution, the algorithm derives a primal 
solution satisfying the integrality constraints. The couple of primaldual solutions thus 
obtained may violate some of the complementary slackness conditions. Through a 
dual-ascent procedure, which starts with some initial dual solution, the algorithm 
incrementally adjusts the dual variables to reduce complementary slackness violations. The 
algorithm also incorporates an adjustment procedure that tries to increase the dual objective 
value through decreasing some dual variables while increasing others. The dual solution 
thus obtained is not necessarily optimal for the dual of the linear relaxation of the ULP, 
but it provides a lower bound of good quality with a rather limited computational effort. 
For complete details of the method, the reader is referred to Erlenkotter (1978) and Van 
Roy and Erlenkotter (1982). For our purposes, it is sufficient to recall that the initial dual 
solution must satisfy the following conditions: 

ppa min (c5+1!} ViEO,pEP(of>O) 
js T+(i) 

(21) 

VP 2 min {cTj - A$‘] Vi ED, p E P(dy > 0). (22) 
jET_(i) 

An upper bound on the optimal value of the original problem may be easily derived from 
a primal solution jj obtained by DUALOC, by solving a related MCNF: 

(23) 

subject to (2)-(4), (7) and 

xb<ofjj VjCEiiEO(j),pEP (24) 

xTi < dfjjj VjET, iED( PEP. (25) 

The FLIP and FLOP relaxations may be solved iteratively, by using as input to one 
the multipliers generated by the other. One then obtains an increasing sequence of lower 
bounds. To justify this assertion, first note that any feasible dual solutions to problems 
FLIP and FLOP are also feasible to problem 5% since the multipliers are fixed at values 
that satisfy the dual constraints. Furthermore, recall that problem FLIP is solved to 
optimality, while a dual-ascent procedure (DUALOC) is used to compute a lower bound 
to problem FLOP. Hence, if an optimal dual solution to problem FLIP can be used directly 
as input to DUALOC, the dual objective is guaranteed to increase. Indeed, this is the case 
since any optimal dual solution (p, v, 1) to problem FLIP satisfies conditions (21) and (22). 
To prove this, we may proceed by contradiction as follows: suppose, without loss of 
generality, that there exists i E 0, p E P (of > 0), such that pLp < minjs T+(i) (cc + A;> = C& + A$. 
Since the y multipliers are nonnegative, &’ < c& + $. + y&. Then, there exists <r > 0 such 
that pLp + 97 < ct. + J$ + $.. Consequently, by setting ji4 = pf + <p, we obtain a feasible 
solution to the dual of problem FLIP for which the objective increases strictly by a quantity 
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of<: > 0. But this contradicts the fact that (CL, v, 1) is an optimal solution to problem FLIP. 
Note that, after solving the FLOP relaxation, the y multipliers can be increased by 

removing some proportion of the slack that may appear in the dual constraints (13). The 
resulting gamma adjustment rule (Crainic and Delorme, 1993) consists in adding the term 
eSj/Aj to each y multiplier related to depot j, where 0 < 8 < 1, and sj is the slack variable: 
sj =fj - CpsP(xirouJofYfj + Ci,Dc,?df’$), and Aj = xpEP(&eo(jJoP + xi.D(,>df’)* 

3. BRANCH-AND-BOUND ALGORITHM 

The general idea of a branch-and-bound (BB) algorithm is to try to solve the original 
problem, and, in case of an unsuccessful attempt, to decompose it into easier subproblems, 
by using a branching rule. These subproblems are further divided, unless their optimal 
solution is found or it is determined that they cannot lead to an optimal solution to the 
original problem @thoming rules). For each generated subproblem, preprocessing rules may 
also be applied in order to delete redundant constraints, or to fix some variables. 

We adapt these ideas to design an exact algorithm to solve the multicommodity location 
problem with balancing requirements. For each generated subproblem, we apply a 
procedure to obtain lower and upper bounds based on the developments presented in 
Section 2. These bounds are used to define efficient fathoming and preprocessing rules. To 
represent location variables that are fixed through branching and preprocessing rules, we 
define the sets T,, = { je T: yj E (0, l}}, T, = 0 E T: yj = 0}, and TI = {j E T: yj = l} of 
free, closed, and open depots, respectively. To generate subproblems from a given subproblem 
S, we use a dichotomic branching rule: a depot j* E T,, is chosen according to some 
criterion, and SC is obtained by transferring j* to T,, while SC results from transferring j* 
to TI. According to the terminology of trees, SC and ST are the O-son node and the l-son 
node, respectively, of thefather node S, and the original problem, where all depots are free, 
is the root node. To decide which generated subproblem should be examined in priority, 
we use the depth-$rst rule: choose one of the subproblems that has been generated most 
recently. This rule minimizes computer storage requirements (Ibaraki, 1987), although it 
may generate a large number of subproblems. However, when a good heuristic is used to 
compute efficient upper bounds, as is the case here, this disadvantage may be reduced. 

Formally then, the BB algorithm keeps a stack A of generated subproblems, as well as 
the value 2” of the best solution identified thus far, and proceeds as follows: 

(1) (initialization) S is the original problem: T,, t T, T, c @, TI c 0. A t 0.2” t + co. 
(2) (preprocessing rule) Attempt to fix some variables (T,, , T, and TI may be modified). 
(3) (bounding procedure) Perform the bounding procedure on S (2” may be updated); if S 

may be fathomed, goto 5. 
(4) (branching rule) Choose j* E T,, and generate SC and ST; select one of them to examine 

next, as subproblem S, and add the other to A. Goto 2. 
(5) (stopping test) If A = 0, STOP; 2” is the optimal value of the original problem. 
(6) (backtracking) Select the subproblem S on top of A. If it may be fathomed goto 5, 

otherwise, goto 2. 

The performance of the algorithm is mainly influenced by three factors: the tightness of 
the bounds, the ability to avoid unnecessary computations through fathoming and 
preprocessing rules, and the way subproblems are generated and selected. We examine 
these issues in the remainder of the section. 
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3.1. Bounding procedure 

The following dual-ascent bounding procedure is executed at Step 3 of the BB algorithm. 
Lower bounds are computed on the optimal value Za of the modified dual g, which is 
obtained from 9 by adding the constant term Ej,r,fj to the objective function,and by 
replacing the fixed c_osts fj (j E T) in c_onstraints (13) by the modified fixed costs fj (j E 7’), 
defined as follows: fj = fj, if jE T,,; fi = + 00, if jE T,; fj = 0, if je Tl. The FLIP-FLOP 
procedure may then be formally stated as follows: 

(1) (initialization) Initialize y, Zf, a lower bound on ZB, and Z”, an upper bound on Z. 
Set the iteration counter t to 1. 

(2) (integrality test) If T,, = 0, compute an upper bound Z: on Z by solving an MCNF; 
if g < Z”, Z” + Z:; STOP. 

(3) (lower bound) Compute a lower bound Z: on Zaeither by solving the FLIP relaxation 
(if t = 1 mod 2), or by applying DUALOC to the FLOP relaxation (if t = 0 mod 2). 

(4) (lower bound test) If Z: 2 Z”, STOP. 
(5) (upper bound) Compute an upper bound Z: on Z either from the optimal solution of 

the FLIP relaxation (if t = 1 mod 2), or by solving an MCNF derived from the best 
primal solution to the FLOP relaxation identified by DUALOC (if t = 0 mod 2). 

(6) (upper bound update) If zl: < Z”, Z” +- q. 
(7) (stopping test) If Z” - Z: < s1 Z: or Z: - Z:_ 1 < e2Zf- 1 or t = t,,,, STOP. 
(8) (preprocessing rule) Attempt to fix somes variables (T,,, T, and Tl may be modified). 
(9) t t t + 1. Goto 2. 

To initialize the procedure, two extremal strategies are possible. In restarting mode, 
which is the default at the root node, y and Zb are initialized to 0. In recuperation mode, 
we use the values generated at the father node to initialize y and Zb. In all cases, Z” is 
initialized to the value of the best solution identified thus far by the BB algorithm. 

The procedure starts with a FLIP, a choice experimentally proven to be superior (Crainic 
and Delorme, 1993). Indeed, if a FLOP is first solved, one does not take into account the 
influence of the balancing flows. In particular, some depots may be given very large values 
for their associated y multipliers, and consequently become “unattractive”, although they 
might subsequently be required in order to satisfy the balancing constraints. 

Note that the lower bound test performed at Step 4 includes the usual feasibility test 
that stops computations when the relaxation is determined to be infeasible. Indeed, we 
assume in our description that any infeasible subproblem takes an infinite optimal value. 

The stopping test uses three parameters el, .s2 and t,, that can be adjusted by the user. 
The first stops the procedure when the relative gap between the lower and upper bounds 
is sufficiently small, the second comes into play when the lower bound has not sufficiently 
increased from one iteration to the next, while the third limits the number of iterations. 

3.2. Fathoming and preprocessing 

A first obvious fathoming criterion, performed at Step 4 of the FLIP-FLOP procedure, 
eliminates a subproblem with a lower bound higher than Z”. Two properties can be used, 
however, to implement stronger fathoming and preprocessing rules to either eliminate 
subproblems from further examination or to reduce the number of variables considered 
when computing bounds. 
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The first property, based on dual information, makes use of the slack variables associated 
with constraints (13): 

Slack Property: Let S be a subproblem, 2’ be a lower bound on Za corresponding to a 
feasible solution (p, v, R, y) of the dual 3 Z” be an upper bound on Z, and j E T,, . If 
(Z’ + sj) > Z”, then yj = 0 in any optimal solution to S. 

To see that this property holds, it suffices to show that (Z’ + sj) is a lower bou_nd on Z(S’,), 
the optimal value of the l-son of S obtained by transferring j to Tr . Since fi = 0 in the 
formulation of S’, , the y multipliers associated to j are all equal to 0. Then, a dual feasible 
solution to S{ can be obtained from (cl, v, 1, y) by setting #’ = pf - y$ Vi E O(j), p E P, and 
$’ = uf - yj”,, Vi E D(j), p E P, while all other variables are kept at their current values. But 
the value of this solution is precisely Z’ +fj - ~~eP(~ioO(j~O~~~ + Ci,,,j,dpyjq,) = Z’ + sj. 

A second property that can be used as a preprocessing rule determines when a depot 
must be opened in order to satisfy supply and demand requirements: 

OD Property: Let S be a subproblem. If, for a given commodity p, there exists an origin 
(destination) i with 04 > 0 (dp > 0) such that only one depotj is adjacent to i, then y, = 1 
in any feasible solution to S. 

Among the possibilities to exploit these properties, we selected two for subsequent 
experiments. The slackfathoming rule consists of using the Slack Property as a fathoming 
rule when a l-son node is generated at Step 4 of the BB algorithm. The slack preprocessing 
rule applies the Slack Property to fix variables at Step 8 of the FLIP-FLOP procedure, 
and when some depots are being closed, it also makes use of the OD Property. In this 
case, the OD Property is only applied once a FLOP relaxation has been solved, since to 
use the test after a FLIP would require dual values to be modified in case depots are 
opened, which would be rather inefficient. The Slack Property is also used each time a 
l-son node is selected at Step 6 of the BB algorithm, assuming the relevant information 
from its father has been saved. Finally, the OD Property is used at Step 2 of the BB 
algorithm, when the root node or a O-son is considered. 

Another technique that may be used to avoid unnecessary computations is the bound 
elimination test. Used in conjunction with the recuperation initialization strategy, this test 
eliminates, for some subproblems, the need to apply the bounding procedure at Step 3 of 
the BB algorithm. To use the test, four assumptions must be satisfied: a O-son node, Sjbt, 
is considered; when solving its father node, the last iteration of the FLIP-FLOP procedure 
was a FLIP; in the optimal solution that was found to this FLIP problem, there was no 
flow circulating through depot j*; and, finally, when considering SC, no depot is opened 
by using the OD Property at Step 2 of the BB algorithm. Then, since SC is obtained from 
its father by closing depot j*, and no depot is being opened due to the OD Property, the 
lower bound that would be computed by solving a FLIP on SC must be equal to the lower 
bound generated when solving the father. Thus, the FLIP-FLOP procedure would be 
stopped immediately by the application of the stopping test, assuming, of course, that Zb 
is initialized to the value of the lower bound at the father node. 

3.3. Branching rules 

Branching rules are used to choose the next depot variable to fix (j* in Step 4 of the 
BB algorithm), and to determine which subproblem should be examined first: Sjd or ST. 
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We distinguish two categories of branching rules: primal rules make use of the information 
obtained when computing the last upper bound, while dual rules exploit the dual variables 
generated while computing the last lower bound. 

From prior experiments, it was found that the most promising primal rules compare the 
“positive” activity at depot j, as measured by customer-depot flows circulating through j, 
to the fixed cost required to open depot j. Crainic, Delorme and Dejax (1993) use similar 
rules in their BB algorithm, and succeed in rapidly finding good solutions. Formally, given 
a solution x to an upper bound subproblem, one computes 

x.i=C C 
I ( 

4 + (j,zA,, xF)/l;) WE T,, (26) 
PEP (i.ik& 

to define the two rules: 

X, rule: Choose j* = arg minjs r,, (Xj} and select first subproblem Sj,‘. 
X, rule: Choose j* = arg maxjET,, and select first subproblem S’y. 

A first class of dual rules is based on the observation that relatively large negative values 
of Ag imply that depot j tends to attract more flow of commodity p than it sends to 
customers. A similar argument applies when the 2: have large positive values. Thus, a large 
value of 1 A.;) indicates that depot j has significant shortage or surplus of commodity p, 
resulting in interdepot balancing flows. Hence, using the same rationale as for the primal 
rules defined above, one measures 

to define the two rules: 

(27) 

A0 rule: Choose j* = arg minjsT,,{Aj} and select first subproblem Sj,‘. 
A, rule: Choose j* = arg maxjET,, {Aj} and select first subproblem Sy. 

A second class of dual rules compares the fixed cost to open depot j to the values of its 
related y multipliers. One makes use of the slack variables sj associated to constraints (13) 
of 3, to define the two rules: 

To rule: Choose j* = arg maxjeT,, and select first subproblem Sjd. 
Tr rule: Choose j* = arg minj, r,, {sj} and select first subproblem ST. 

4. EXPERIMENTAL RESULTS 

The experimentation aims at identifying the most efficient branch-and-bound design, 
and is centered around five main issues: 

Gamma adjustment: What is the influence of the gamma adjustment rule on the efficiency 
of the algorithm? In particular, for which values of 8 do we obtain the best performance? 
Restarting versus recuperation: Which initialization strategy is the most efficient? 
Stopping parameters: For how long should the FLIP-FLOP procedure be executed? 
What is the “ideal” tradeoff between the number of generated subproblems and the 
time spent solving each of these subproblems? 
Slack fathoming versus slack preprocessing: What is the most efficient way to use the 
Slack Property, through fathoming or preprocessing? 
Branching rule: Which branching rule is the most efficient? 
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To answer these questions, we implemented the algorithm in FORTRAN/77, using the 
primal simplex code RNET (Grigoriadis and Hsu, 1979) to solve uncapacitated minimum 
cost network flow problems. In order to solve uncapacitated location problems, we coded 
our own multicommodity version of DUALOC (Erlenkotter, 1978). The dual-ascent phase 
follows Erlenkotter, while the adjustment step is the primaldual procedure of Van Roy 
and Erlenkotter (1982). This adjustment phase is repeated as long as the dual objective 
continues to increase. The code was compiled with thefl7 compiler using the - 0 option, 
and all experiments were performed on SUN Spard workstations. 

The tests are conducted on randomly generated problems (the generator is described in 
Crainic, Delorme and Dejax, 1993) and on data based on an actual large-scale application. 
Table 1 displays the dimensions of the test problems, where problems Pi to Pi, and Pi, 
to p,, are, respectively, medium and large-size randomly generated instances, while 
problems PZs to P,, are based on the actual application. The parameter F, the last column 
of the table, indicates the relative importance of the fixed costs. For randomly generated 
problems, two levels, 1 and 2, are used, while levels 14 define the instances based on the 
actual data. In fact, a problem at level i (i > 1) is obtained from a problem at level i - 1 
by multiplying the fixed costs by 10. Thus, for example, problems P, and P, are the same 
except for this modification. 

A first experiment is dedicated to determining the relative efficiency of the branching 
rules. For each data instance, the six branching rules are tested, executing the BB algorithm 

Table 1. Dimensions of the test problems 

Prob IPI 101 IDI I TI IA,,1 l&l F 

p, 
p2 
p3 
p4 
p5 
p.5 
p, 
PS 
p9 
P 10 

P 11 

P I2 

P 13 

P 14 

P 15 

P 16 
P 17 

P 18 

P 19 

P *cl 

P 21 

P 22 
P 23 

P 24 

P 25 

P 26 
P 27 

P 28 

125 125 
125 125 
125 125 
125 125 
124 124 
124 124 
125 125 
125 125 
124 124 
124 124 
124 124 
124 124 
219 219 
219 219 
219 219 
219 219 
220 220 
220 220 
219 219 
219 219 
219 219 
219 219 
220 220 
220 220 
289 289 
289 289 
289 289 
289 289 

25 875 875 600 
25 875 875 600 
25 879 879 600 
25 879 879 600 
26 871 871 650 
26 871 871 650 
25 875 875 600 
25 875 875 600 
26 868 868 650 
26 868 868 650 
26 869 869 650 
26 869 869 650 
44 2630 2630 1892 
44 2630 2630 1892 
44 2630 2630 1892 
44 2630 2630 1892 
43 2641 2641 1806 
43 2641 2641 1806 
44 2629 2629 1892 
44 2629 2629 1892 
44 2629 2629 1892 
44 2629 2629 1892 
43 2647 2647 1806 
43 2647 2647 1806 
87 1810 1810 746 
87 1810 1810 746 
87 1810 1810 746 
87 1810 1810 746 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
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up to 1000 iterations. No gamma adjustment is used, and the recuperation initialization 
strategy and slack fathoming rule are implemented. The stopping parameters are given the 
following values: e1 = s2 = 0.01, and t,, = 10. Other algorithmic options display the same 
general behavior with respect to the relative performance of the branching rules. Table 2 
shows, for each problem and each branching rule, the number of iterations performed 
(“generated nodes”). When the algorithm is stopped before proving optimality of the best 
solution found, a “ + ” indicates that an optimal solution was obtained, while a “ - ” denotes 
the contrary. 

Table 2. Tests on branching rules (generated nodes) 

Prob 

p* 
p9 
P 10 

P 11 

P 12 

P 13 

P 14 

P 15 

P 16 

P 17 

P 18 

P 19 
P 20 

P 21 

P 22 

P 23 

P 24 

P 25 

P 26 

P 27 

P 28 

263 
161 
63 
390 
599 
45 
316 
354 
318 
120 
282 
101 
146 
513 

1OOU 
100 
370 
226 

1000~ 
1000- 
1000+ 

498 

:EE + 

201 
585 

1000+ 
228 

389 
816 
733 

1000+ 
1000- 

110 
682 

1OOV 
270 
330 
257 

1000~ 
1000+ 
1OOC 
1OOw 

332 
1000~ 

282 
1000- 
1OOC- 
1000 - 
1000~ 488 1000- 
1OOW 1000- lOOF 
1OOo+ 1000+ 

114 201 
361 585 
837 1000+ 
163 228 

267 205 
157 936 
61 289 

465 503 
592 1000- 
44 64 
326 705 
354 1OOV 
328 219 
119 211 
268 273 
684 504 
169 712 
556 1OOV 

lOOF 1000- 
108 178 
393 
221 

1ooo- 
1OOV 
1000+ 

1000~ 
453 

1ooO- 
1OtX- 
1OOW 

1000+ 
149 
509 

1000~ 
159 

326 
84 
70 
116 
695 
31 
565 
628 
112 
188 
195 
787 
114 

1000+ 
1000~ 

60 
431 
64 

1000+ 
1000+ 
1000+ 

200 
1000+ 
1000’ 

51 
253 
260 
89 

1000+ 
1000+ 

877 
lOOF 
1000+ 

153 
1000+ 
1000+ 

383 
142 
460 

1000+ 
1000+ 
1OOV 
1000- 
tOOO+ 
lOOK 
looO_ 
1OOC- 
1000- 
1000- 
1000~ 
iOOW 
1000+ 

165 
626 
499 
128 

A few conclusions emerge from the experiment. In particular, the rules that select first 
a l-son node are generally outperformed by the corresponding rules that explore first a 
O-son node. Also, the X, and A, rules behave almost identically since they both measure 
the “importance” of a depot in terms of the flow component of the problem. However, 
the A, rule should be preferred since it is computationally less expensive. These rules are, 
however, clearly outperformed by the IO rule, especially when applied to solve large-size 
problems. The superiority of this rule may be easily explained since it combines powerfully 
with the Slack Property to reduce the number of generated subproblems. Therefore, our 
general conclusion is that the I-,, rule is preferable and should be used in all cases. 

The way to exploit the Slack Property, through either fathoming or preprocessing, and 
the gamma adjustment rule are the objects of a second experiment. We only report the 
results of the extremal adjustments: no adjustment (0 = 0) and maximum adjustment (0 = l), 
since prior experiments have shown their superiority over intermediate adjustments 
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(0 < 8 < 1). This behavior may be easily explained. On the one hand, using no adjustment 
maintains the slack variables at their highest values, thus preserving the strength of the 
Slack Property. On the other hand, the maximum adjustment maximizes the number of 
O-son nodes for which bounds are not computed at Step 3 of the BB algorithm, following 
the application of the bound elimination test. Indeed, since the maximum adjustment 
increases significantly the routing costs in the formulation of the FLIP problem, it yields 
a better chance of identifying a network flow solution with inactive depots. In this 
experiment, the To branching rule and the recuperation initialization strategy are used. 
The stopping parameters are given the same values as previously. Table 3 displays, for 
each problem and each combination of adjustment (0 = 0 or 0 = 1) and either fathoming 
or preprocessing rules, the total number of generated subproblems (“nodes”) and the 
elapsed CPU time in seconds (“time”), required to find an optimal solution. 

Prob 

Table 3. Fathoming versus preprocessing 

Fathoming Preprocessing 

0=0 B=l e=o 8=1 

Nodes Time Nodes Time Nodes Time Nodes Time 

PI 326 56 358 56 245 45 355 
P2 84 13 98 20 67 15 67 
P3 70 51 78 54 79 72 77 
P.4 116 74 122 88 131 114 149 
PS 695 298 707 285 507 239 617 
PI5 31 24 48 27 11 24 21 
P, 565 570 581 575 523 574 579 
PI3 628 564 388 331 431 538 511 
P9 112 17 114 18 111 16 111 
P 10 188 37 67 19 149 42 103 
P 11 195 131 199 139 205 154 235 
P 12 787 432 401 258 441 294 423 
P 13 114 52 148 61 79 35 107 
P 14 1638 848 1387 872 993 911 619 
P 15 29551 36606 15297 18431 6751 9707 8473 
P 16 60 89 94 101 25 58 37 
P 17 431 199 338 156 361 172 397 
P 1s 64 42 98 52 47 39 51 
P 19 4041 4371 4135 4233 6391 7022 6935 
P 20 5237 4962 3028 3015 4803 5429 4201 
P 21 4914 2270 5378 2451 6577 3226 8079 
P 22 200 82 193 75 143 77 193 
P 23 45629 40246 29009 25306 10263 10046 10355 
P 24 3373 2796 1662 1412 2031 3765 1179 
P 25 51 
P 26 253 3496 

92 109 69 123 71 
303 487 195 343 303 

P 27 260 384 234 311 295 1305 393 
P 28 89 164 162 195 15 50 15 

54 
16 
53 
111 
245 
20 
569 
465 
17 
31 
159 
300 
44 
567 

10217 
58 
174 
36 

7197 
4215 
3389 

69 
9440 
1108 
123 
438 
646 
50 

The results shown in the table demonstrate the superiority of the preprocessing option 
when used to solve very difficult problems, such as P,, and P,,. For all other problems, 
both options are equally effective, but still a slight advantage belongs to the preprocessing 
option. The effects of the gamma adjustment rule on the performance of the algorithm is 
more difficult to assess. In particular, when the preprocessing option is used, the two 
extremal adjustments perform equally well. However, subsequent experiments with different 
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stopping parameters (.sl = s2 = 0.0001) have shown that using no adjustment is generally 
more efficient than performing maximum adjustment. 

A third experiment explores both the initialization strategies and the adjustment of the 
stopping parameters. The recuperation approach is compared to a hybrid initialization 
strategy, which consists of applying the restarting mode when a subproblem is obtained 
from backtracking, and recuperation otherwise. Prior experiments have demonstrated the 
superiority of both methods over a pure restarting strategy. Two adjustments of the stopping 
parameters are tested: a1 = s2 = E = 0.01, and E = 0.0001, along with t,,, = 10 (note that 
this maximum is never achieved). The To branching rule and the slack preprocessing option 
are used, and no adjustment of the y multipliers is performed. Table 4 shows the results 
of this experiment, for each problem and each combination of stopping parameters (E = 0.01 
or 0.0001) and initialization strategies (recuperation or hybrid). 

Table 4. Recuperation versus hybrid initialization 

Prob 

Recuperation Hybrid 

& = 0.01 E = 0.0001 & = 0.01 E = 0.0001 

Nodes Time Nodes Time Nodes Time Nodes Time 

PI 245 
P, 67 
P, 79 
P, 131 
P, 507 
P, 11 
P, 523 
P* 431 
P, 111 
P 10 149 
P 11 205 
P 12 441 
P 13 79 
P 14 993 
P 15 6751 
P 16 25 
P 17 361 
P 18 47 
P L9 6391 
P 20 4803 
P 21 6577 
P 22 143 
P 23 10263 
P 24 2031 
P 25 69 
P 26 195 
P 27 295 
P 28 15 

45 
15 
72 
114 
239 
24 
574 
538 
16 
42 
154 
294 
35 

911 
9707 

58 
172 
39 

7022 
5429 
3226 

77 
10046 
3765 
123 
344 
1305 
50 

113 36 
45 17 
41 65 
47 107 
159 143 
7 29 

263 560 
59 514 
77 16 
45 27 
75 92 
105 349 
39 36 

235 759 
1363 5604 

9 69 
257 173 

7 44 
1189 2645 
307 3028 
877 801 
77 87 

3061 6376 
361 1709 
69 123 
193 371 
63 330 
3 92 

43 
53 
39 
49 
167 
7 

221 
63 
51 
57 
49 
63 
35 
175 
727 
19 
91 
41 
741 
419 
359 
65 

635 
249 
75 
69 
169 
7 

18 
15 
65 
130 
167 
26 

462 
358 
13 
31 
85 

220 
39 

616 
3192 
206 
84 
69 

2679 
3626 
497 
122 

1790 
1700 
160 
332 
1987 
61 

39 19 
37 16 
13 33 
41 213 
57 94 
5 31 

77 354 
41 438 
41 14 
39 21 
23 61 
41 230 
35 45 
145 583 
355 2581 

9 119 
97 96 
7 44 

711 3783 
267 3966 
275 489 
65 127 

467 1918 
141 1233 
49 293 
37 181 
53 691 
3 103 

The results support the following general conclusion: it is preferable to spend more time 
at each node computing tighter bounds than to stop the bounding procedure early in the 
hope of avoiding useless work. Indeed, the hybrid strategy, which performs more work on 
each subproblem treated following backtracking, is clearly superior to the recuperation 
rule. Regarding the adjustment of the stopping parameters, a smaller E generally performs 
better, particularly when the recuperation strategy is used. 
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As a general conclusion, we recommend the following algorithmic design: use the To 
branching rule, the slack preprocessing option, the hybrid initialization strategy, with no 
adjustment of the y multipliers, and set the stopping parameters to the following values: 
aI = O.OOOl,s, = 0.0001 and t,,, = 10. To assess the competitiveness of this implementation, 
we compare it to other methods reported in the literature. Table 5 shows the results of 
two heuristics: “TABU”, the tabu search method of Crainic, Gendreau, Soriano and 
Toulouse (1992), and “DUAL”, the dual-ascent heuristic of Crainic and Delorme (1993). 
For the tabu search heuristic, the results of problems P,, to P,, are not available. The 
table also displays the results of an implementation of the branch-and-bound approach 
(“BBWR”) of Crainic, Delorme and Dejax (1993), where a maximum of 10000 subproblems 
are explored. Note that, by using this limit on the number of subproblems, optimality 
could be proved for only six of the 28 problems. The last two columns of the table display 
the results obtained with our method (“BBFF”). For all methods, the value of the best 
solution found (Z”), rounded in thousands of units, and the elapsed CPU time in seconds 
on SUN Sparc2 workstations (“time”) are indicated. 

The results show that the BB algorithm outperforms the other methods, either in solution 
quality, in computing times, or in both. Furthermore, it is important to note that even if the 
dual-ascent heuristic generally identifies good quality solutions, it only finds an optimal 
solution to 25% of the problems in our data set, while the BB algorithm improves by as 
much as 1 Oh-8 % the solution of another 25 % of the problems. Hence, the extra computational 
effort required by the BB algorithm is well paid off by the improvement in solution quality. 

Prob 

Table 5. Comparison with other methods 

TABU DUAL BBWR BBFF 

Z” Time Z” Time Z” Time Z” Time 

p, 
p2 
p3 
p4 
p5 
p, 
p, 
pi 
p9 
P 10 

P 11 

P 12 

P 13 

P 14 

P I.5 

P 16 

P 17 

P 18 

P 19 

P 20 
P 21 

P 22 

P 23 

P 24 

P 25 

P 26 

P 27 

P 28 

42499 194 
61565 176 
109177 889 
142063 718 
69144 609 
88518 498 

248308 1333 
291199 1050 
21134 195 
46014 183 
93874 802 
136642 727 
23286 340 
42310 330 
65495 1103 
89827 734 
33271 396 
56832 366 
61174 922 
101278 678 
49026 423 
76949 198 
96163 811 
138908 990 

_ 

42499 1 42499 
65320 5 61565 
108914 3 108914 
143036 17 142063 
69487 6 69611 
88518 16 88518 

248329 3 249142 
292080 45 290271 
21406 1 21134 
50011 6 46014 
94216 9 93874 
137668 22 136642 
23349 5 23286 
43909 52 42062 
65308 14 66975 
89068 25 89068 
33601 7 33464 
57553 26 56832 
61052 20 63937 
101420 59 102159 
48917 7 49348 
77589 12 77386 
96312 16 98311 
133454 18 133454 
53176 5 53229 
56526 9 56829 
72385 41 72339 
166506 32 166506 

1993 
69 

6994 
3488 
4034 
332 

9804 
9929 
1926 
127 

5929 
5890 
5030 
372 

10298 
11254 
4960 
5017 
9552 
8658 
4148 
4701 
4148 
7946 
19587 
19130 
22919 
5556 

42499 
61565 
108914 
142063 
69144 
88518 

248178 
290271 
21134 
46014 
93874 
136642 
23286 
42062 
65230 
89068 
33267 
56832 
60959 
100851 
48860 
75903 
96114 
133454 
53176 
56515 
72339 
166506 

20 
18 
37 

218 
98 
34 
361 
445 
15 
23 
66 

234 
49 
587 

2591 
126 
100 
47 

3794 
3975 
493 
131 

1928 
1241 
313 
201 
712 
122 
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5. CONCLUSION 

The multicommodity location problem with balancing requirements is related to one of 
the major logistics issues faced by distribution and transportation firms: the management 
of a fleet of vehicles over a medium to long term planning horizon. In the particular context 
of the land transportation management of a heterogeneous fleet of containers by an 
international maritime shipping company, savings of up to 40 % of the total transportation 
cost of empty containers have been identified (Dejax et al., 1987) by finding approximate 
solutions to the model. Furthermore, in the same context, both algorithmic and solution 
efficiencies are of prime importance, since this logistics problem has to be solved regularly 
due to variations in patterns of demands, transportation costs, space availability and costs 
for container warehousing. 

To solve the problem, we presented a branch-and-bound algorithm in which bounds are 
computed by a dual-ascent procedure. Several branching, fathoming and preprocessing 
rules were introduced and experimental results allowed us to identify an efficient algorithmic 
design. They have also shown that the method performs well on a wide variety of problems, 
including an actual large-scale application. Furthermore, for these problems, the algorithm 
outperforms other methods proposed in the literature. 
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